# University of Wisconsin-Madison <br> Math 340 - Spring 2010 Linear Algebra 

Final Exam

Exercise 1: Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $L((1,1))=(3,0)$ and $L((-2,1))=(1,1)$. Find $L((1,4))$.
Exercise 2: Some questions about the determinant.
(1) Let $A$ be a $n \times n$ matrix satisfying $A A^{t}=I_{n}$. Prove that $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.
(2) Show that there is no $5 \times 5$ matrices $A$ satisfying $A^{t}=-A$ (such a matrix is called skew symmetric).

Exercise 3: Prove or disprove that the following maps are linear.
(1) $L_{1}: \mathbb{R}_{2}[X] \rightarrow \mathbb{R}$ with $L_{1}\left(a+b X+c X^{2}\right)=a+b-2$
(2) $L_{2}: \mathbb{R}_{n}[X] \rightarrow \mathbb{R}$, with $L_{2}(P)=<P, Q>$ where $Q \in \mathbb{R}_{n}[X]$ is fixed and $<P, Q>=$ $\int_{0}^{1} P(t) Q(t) d t$
(3) $L_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, with $L_{3}((x, y, z))=\left(x^{2}, y-z, 0\right)$.

Exercise 4: Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map defined by

$$
L\left(\binom{x}{y}\right)=\binom{x+2 y}{x}
$$

Let $\mathcal{C}$ be the canonical basis and consider $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ of $\mathbb{R}^{2}$ with,

$$
v_{1}=\binom{1}{-1}, v_{2}=\binom{2}{1}
$$

(1) Check that $\mathcal{B}$ is a basis of $\mathbb{R}^{2}$.
(2) (a) Find the matrix of $L$ relative to the canonical basis $\mathcal{C},[L]_{\mathcal{C}}^{\mathcal{C}}$.
(b) Find the transition matrix, $[I]_{\mathcal{B}}^{\mathcal{C}}$, for changing from $\mathcal{B}$ to $\mathcal{C}$.
(c) Find the transition matrix, $[I]_{\mathcal{C}}^{\mathcal{B}}$, for changing from $\mathcal{C}$ to $\mathcal{B}$.
(d) Find the matrix of $L$ relative to the basis $\mathcal{B},[L]_{\mathcal{B}}^{\mathcal{B}}$.
(3) Consider the sequence of numbers $u_{n}$ satisyfying $u_{1}=1, u_{2}=1$ and $u_{n+2}=u_{n+1}+2 u_{n}$. (we have $1,1,3,5,11,21,43 \ldots$ )
(a) Find a matrix $A$ such that $\binom{u_{n+2}}{u_{n+1}}=A\binom{u_{n+1}}{u_{n}}$.
(b) Find a relation between $\binom{u_{n+2}}{u_{n+1}}, A$ and $\binom{u_{2}}{u_{1}}$.
(c) compute $u_{102}$.

Exercise 5: Let $A$ be an $n \times n$ matrix. The goal of this exercise is to prove that $\operatorname{Ker} A=\operatorname{Im} A$ if and only if $2 \operatorname{rank}(A)=n$ and $A^{2}=0$.
(1) Assume that $\operatorname{Ker} A=\operatorname{Im} A$.
(a) Prove that $2 \operatorname{rank}(A)=n$.
(b) Prove that for all $X \in \mathbb{R}^{n}, A^{2} X=0$. Deduce that $A^{2}=0$.
(2) Assume that $2 \operatorname{rank}(A)=n$ and $A^{2}=0$.
(a) Prove that $\operatorname{Im} A \subseteq \operatorname{Ker} A$
(b) Deduce that $\operatorname{Ker} A=\operatorname{Im} A$ by comparing their dimension.

Exercise 6: Let $L: \mathbb{R}_{3}[X] \rightarrow \mathbb{R}_{2}[X]$ be the linear map defined by

$$
L\left(a+b+c X^{2}+d X^{3}\right)=b-a+(c+d) X+a X^{2}
$$

Consider the basis $\mathcal{C}_{3}=\left\{1, X, X^{2}, X^{3}\right\}$ and $\mathcal{C}_{2}=\left\{1, X, X^{2}\right\}$.
(1) Find the matrix $[L]_{\mathcal{C}_{3}}^{\mathcal{C}_{2}}$ of $L$ relative to $\mathcal{C}_{3}$ and $\mathcal{C}_{2}$.
(2) Find a basis for $\operatorname{ker} L$.
(3) Find $\operatorname{Im} L$.

Exercise 7: Let $(V,<,>)$ be an inner product space (of finite dimension) and let $W$ be a subspace of $V$. Let $\operatorname{proj}_{W}: V \rightarrow W$ be the orthogonal projection on W .
(1) Prove that $\operatorname{proj}_{W}$ is linear (hint: take $\lambda \in \mathbb{R}$, and $v, v^{\prime} \in V$ and find the orthogonal decomposition of $\left.\lambda v+v^{\prime}\right)$.
(2) Prove that $\operatorname{Im} \operatorname{proj}_{W}=W$.
(3) Prove that ker $\operatorname{proj}_{W}=W^{\perp}$ (hint: you can use the rank theorem).

