University of Wisconsin-Madison Math 340 - Spring 2010 Linear Algebra **Final Exam**

Exercise 1: Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ such that L((1,1)) = (3,0) and L((-2,1)) = (1,1). Find L((1,4)).

Exercise 2: Some questions about the determinant.

- (1) Let A be a $n \times n$ matrix satisfying $AA^t = I_n$. Prove that det A = 1 or det A = -1.
- (2) Show that there is no 5×5 matrices A satisfying $A^t = -A$ (such a matrix is called skew symmetric).

Exercise 3: Prove or disprove that the following maps are linear.

- (1) $L_1 : \mathbb{R}_2[X] \to \mathbb{R}$ with $L_1(a + bX + cX^2) = a + b 2$ (2) $L_2 : \mathbb{R}_n[X] \to \mathbb{R}$, with $L_2(P) = \langle P, Q \rangle$ where $Q \in \mathbb{R}_n[X]$ is fixed and $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$. (3) $L_3 : \mathbb{R}^3 \to \mathbb{R}^3$, with $L_3((x, y, z)) = (x^2, y z, 0)$.

Exercise 4: Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map defined by

$$L\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}x+2y\\x\end{array}\right)$$

Let C be the canonical basis and consider $\mathcal{B} = \{v_1, v_2\}$ of \mathbb{R}^2 with,

$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- (1) Check that \mathcal{B} is a basis of \mathbb{R}^2 .
- (2) (a) Find the matrix of L relative to the canonical basis \mathcal{C} , $[L]_{\mathcal{C}}^{\mathcal{C}}$.

 - (b) Find the transition matrix, $[I]_{\mathcal{B}}^{\mathcal{C}}$, for changing from \mathcal{B} to \mathcal{C} . (c) Find the transition matrix, $[I]_{\mathcal{C}}^{\mathcal{B}}$, for changing from \mathcal{C} to \mathcal{B} .
 - (d) Find the matrix of L relative to the basis $\mathcal{B}, [L]_{\mathcal{B}}^{\mathcal{B}}$.
- (3) Consider the sequence of numbers u_n satisfying $u_1 = 1$, $u_2 = 1$ and $u_{n+2} = u_{n+1} + 2u_n$. (we have 1, 1, 3, 5, 11, 21, 43...)

(a) Find a matrix A such that
$$\begin{pmatrix} u_{n+2} \\ u_{n+1} \end{pmatrix} = A \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$$
.
(b) Find a relation between $\begin{pmatrix} u_{n+2} \\ u_{n+1} \end{pmatrix}$, A and $\begin{pmatrix} u_2 \\ u_1 \end{pmatrix}$.
(c) compute u_{102} .

Exercise 5: Let A be an $n \times n$ matrix. The goal of this exercise is to prove that KerA = ImA if and only if 2rank(A) = n and $A^2 = 0$.

(1) Assume that KerA = ImA.

- (a) Prove that 2rank(A) = n.
- (b) Prove that for all $X \in \mathbb{R}^n$, $A^2 X = 0$. Deduce that $A^2 = 0$.
- (2) Assume that 2rank(A) = n and $A^2 = 0$.
 - (a) Prove that $\text{Im}A \subseteq \text{Ker}A$
 - (b) Deduce that KerA = ImA by comparing their dimension.

Exercise 6: Let $L : \mathbb{R}_3[X] \to \mathbb{R}_2[X]$ be the linear map defined by

$$L(a + b + cX^{2} + dX^{3}) = b - a + (c + d)X + aX^{2}.$$

Consider the basis $C_3 = \{1, X, X^2, X^3\}$ and $C_2 = \{1, X, X^2\}.$

- (1) Find the matrix [L]^{C₂}_{C₃} of L relative to C₃ and C₂.
 (2) Find a basis for kerL.
- (3) Find ImL.

Exercise 7: Let (V, <, >) be an inner product space (of finite dimension) and let W be a subspace of V. Let $proj_W : V \to W$ be the orthogonal projection on W.

- (1) Prove that $proj_W$ is linear (<u>hint</u>: take $\lambda \in \mathbb{R}$, and $v, v' \in V$ and find the orthogonal decomposition of $\lambda v + v'$).
- (2) Prove that Im $proj_W = W$.
- (3) Prove that ker $proj_W = W^{\perp}$ (hint: you can use the rank theorem).